
清华大学材料学院长聘教授;乌镇实验室学术带头人
教育背景
1998/09-2002/08 清华大学材料科学与工程系,学士
2002/09-2007/01 清华大学材料科学与工程系,博士
工作履历
2007/02-2009/08 美国加州大学圣巴巴拉分校材料系 (Materials Department, University of California, Santa Barbara)博士后
2009/08-2010/12 哈佛大学工程与应用科学学院 (School of Engineering and Applied Sciences, Harvard University)博士后
2011/01-2011/11 清华大学材料科学与工程系助理研究员
2011/12-2015/12 清华大学材料学院副研究员
2011/07-2016/12 清华大学材料学院(原材料系)党委研究生工作组组长
2016/01-2017/11 清华大学材料学院副教授
2017/12-至今 清华大学材料学院长聘教授
2017/01-2023/12 清华大学材料学院副院长
研究领域
关注聚合物复合材料结构-性能关联,通过显微结构设计实现聚合物复合材料中电、磁、光等性能的集成与耦合,重点对其电子限域极化及离子输运等特性进行按需调控。累计以通讯作者在包括Science,Nature Energy,Nature Nanotechnology,Adv. Mater.等在内的期刊发表SCI论文180余篇,他引18000余次,H-index 69。申请(授权)发明专利29项。作国际会议邀请报告40余次。作为项目负责人主持国家杰出青年基金、国家重点研发计划、基金委重大仪器研制等多个项目。
主要研究方向包括:
1.聚合物基复合电介质(用于超高功率脉冲功率电源、新能源逆变器等)
2.锂离子固体电解质及全固态锂离子电池的设计与制备
3.柔性电介质材料中的极性拓扑新物态与新物性
4.柔性可拉伸的传感/驱动一体化智能材料
奖励与荣誉
2022 教育部自然科学一等奖(1/5)
2016 国家杰出青年科学基金
2015 教育部青年长江学者
2013 北京市科技新星
2012 国家自然科学基金委优秀青年科学基金
2009 全国百篇优秀博士学位论文
2005 清华大学学生社会工作特等奖学金/社会工作标兵
2004 清华大学“一二九”优秀辅导员奖
学术成果
代表性论文
27 M.Z. Yang, H.Y. Li, J. Wang, W.X. Shi, Q.H. Zhang, H.Z. Xing, W.B. Ren, B.Z. Sun, M.F Guo, E.X. Xu, N.N. Sun, L. Zhou, Y. Xiao, M.F. Zhang, Z. Li, J.Y Pan, J.Y. Jiang, Z.H. Shen, X.Y. Li, L. Gu, C.-W. Nan, X. Wang, and Y. Shen, “Roll-to-Roll Fabricated Polymer Composites Filled with Sub-nanosheets Exhibiting High Energy Density and Cyclic Stability at 200 oC”, Nature Energy, 2023, in press
26 M.Z. Yang, M.F Guo, E.X. Xu, W.B. Ren, D.Y. Wang, S. Li, S.J. Zhang, C.-W. Nan, Y. Shen*, “Polymer Nanocomposite Dielectrics for Capacitive Energy Storage (invited review)”, Nature Nanotechnology, 2023, in press
25 M.F. Guo, E.X. Xu, H.B. Huang, C.Q Guo, H.T. Chen, S.L. Chen, S. He, L. Zhou, J. Ma, Z.H. Shen, B. Xu, D. Yi, P. Gao, C.-W. Nan, N. D. Mathur and Y. Shen*, “Electrically Driven Rotation of Polar Spirals in a Relaxor Ferroelectric Polymer”, Nature Communications 2023 in press
24 T.X. Tang, W.F. Yang, Z.H. Shen, J. Wang, M.F. Guo, Y. Xiao, W.B Ren, J. Ma, R. Yu, C.-W. Nan, and Y. Shen*, “Compressible Polymer Composites with Enhanced Dielectric Temperature Stability”, Adv. Mater., 2023, 2209958
23 T.X. Tang, Z.H. Shen, J. Wang, S.Q Xu, J.X. Jiang, J.H. Chang, M.F. Guo, Y.J. Fan, Y. Xiao, Z.H. Dong, H.B. Huang, X.Y. Li, Y.H. Zhang, D.Y. Wang, L.Q. Chen, K. Wang, S.J. Zhang∗, C.-W. Nan∗ and Y. Shen∗, “Stretchable polymer composites with ultrahigh piezoelectric performance”, National Science Review 2023, 10, nwad177
22 M.Z. Yang, F. Yuan, W.X. Shi, W.B. Ren, M.F. Guo, C. Ouyang, L. Zhou, N.N. Sun, Y. Xiao, E.X. Xu, X.H. Zhang, Y. Wei, X.L. Deng,C.-W. Nan, X. Wang, and Y. Shen, “Sub-Nanowires Boost Superior Capacitive Energy Storage Performance of Polymer Composites at High Temperatures”,Adv. Funct. Mater. 2023, 2214100
21 M.Z. Yang, L. Zhou, X. Li, W.B Ren, and Y. Shen*, “Polyimides Physically Crosslinked by Aromatic Molecules Exhibit Ultrahigh Energy Density at 200 °C”,Adv. Mater., 2023, 2302392
20 W.B. Ren, M.Z. Yang, L. Zhou, Y.J. Fan, S. He, J.Y. Pan, T.X. Tang, Y. Xiao, C-W. Nan and Y. Shen*, “Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage”, Adv. Mater. 2022, 2207421
19 M.Z. Yang, W.B. Ren, M.F. Guo and Y. Shen*, “High-Energy-Density and High Efficiency Polymer Dielectrics for High Temperature Electrostatic Energy Storage: A Review”, Small, 2022, 2205247
18 M.F. Guo, E.X. Xu, S. He, W. Li, Q. Li, J. Ma, Y.-H. Lin, C.-W. Nan and Y. Shen*, “A pyrotoroidic transition in ferroelectric polymer”, Matter, 2022, 5, 3041
17 S. He, M.F. Guo, Y. Wang, Y.H. Liang, and Y. Shen*, “An Optical/Ferroelectric Multiplexing Multidimensional non-Volatile Memory from Ferroelectric Polymer”, Adv. Mater., 2022, 2202181
16 Y.F Liu , L. Zhou, Y.Z. Wen, Y. Shen, J.B. Sun, and J. Zhou*, “Optical Vector Vortex Generation by Spherulites with Cylindrical Anisotropy”, Nano Letters, 2022, 22, 2444
15 M.F.Guo, C.Q. Guo, J. Han, S.L. Chen, S. He ; T.X.Tang, Q. Li, J. Strzalka, J. Ma, D. Yi, K. Wang, B. Xu, P. Gao, H.B. Huang, L.Q. Chen, S. J. Zhang, Y. H. Lin, C. W Nan, Y. Shen“Toroidal polar topology in strained ferroelectric polymer, Science, 2021, 371, 1050
14 Y.Q. Chen, J.F. Qian, J.Y. Yu, M.F. Guo, Q.H. Zhang, J.Y. Jiang, Z.H. Shen, L-Q. Chen and Y. Shen*, “All-Scale Hierarchical Architecture Induces Colossal Room-Temperature Electrocaloric Effect at Ultralow Electric Field in Polymer Nanocomposites”, Adv. Mater. 2020, 1907927
13 Z.W. Bao, C.M. Hou, Z.H. Shen, H.Y. Sun, G.Q. Zhang, Z. Luo, Z.H Dai, C.M. Wang, X.W. Chen, L.B. Li, Y.W. Yin, Y. Shen, X.G. Li*, “Negatively Charged Nanosheets Significantly Enhance the Energy‐Storage Capability of Polymer‐Based Nanocomposites”, Adv. Mater. 2020, 1907227
12 Z. H. Shen, J.J. Wang, J.Y. Jiang, S. X. Huang, Y. H. Lin, C.-W. Nan, L.-Q. Chen, and Y. Shen*, “Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics”, Nature Communications, 2019, 10, 1843
11 M.F. Guo, J.Y. Jiang, Z. H. Shen, Y. H. Lin, C.-W. Nan, and Y. Shen*, “Dielectric Nanocomposites Based on Ferroelectric Polymers towards High Energy Density: Enhanced Breakdown Strength and Improved Discharge Efficiency”, Materials Today, 2019, 29, 49
10 J.Y. Jiang, Z.H. Shen, X.K. Cai, J.F. Qian, Z.K. Dan, Y.H. Lin, B.L. Liu, C.-W. Nan, L.Q. Chen, and Y. Shen*, “Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density”, Adv. Energy. Mater. 2019, 1803411
09 J.F. Qian, R.C. Peng, Z.H. Shen, J.Y. Jiang, F. Xue, T.N. Yang, L.Q. Chen, Y. Shen*, “Interfacial Coupling Boosts Giant Electrocaloric Effects in Relaxor Polymer Nanocomposites: In Situ Characterization and Phase-Field Simulation”, Adv. Mater. 2018, 1801949
08 Z. H. Shen, J.J. Wang, J.Y. Jiang, Y. H. Lin, C.-W. Nan, L.-Q. Chen, Y. Shen*, “Phase-Field Model of Electrothermal Breakdown in Flexible High-Temperature Nanocomposites under Extreme Conditions”, Adv. Energy Mater. 2018, 18000509
07 X. Zhang, J. Y. Jiang, Z. H. Shen, Z. K. Dan, M. Li, Y. H. Lin, L. Q. Chen, C-W Nan, Y. Shen*, “Polymer Nanocomposites with Ultrahigh Energy Density and High Discharge Efficiency by Modulating Their Nanostructures in Three Dimensions”, Adv. Mater. 2018, 1707269
06 Z. H. Shen, J.J. Wang, Y. H. Lin, C.-W. Nan, L.-Q. Chen, Y. Shen, “High-Throughput Phase-Field Design of High-Energy-Density Polymer Nanocomposites”, Adv. Mater. 2018, 1704380
05 X. Zhang, T. Liu, S. F. Zhang, X. Huang, B. Q. Xu, Y. H. Lin, L. L. Li, C.W. Nan, Y. Shen, “Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes”, J. Am. Chem. Soc. 2017, 139, 13779
04 Y. Shen*,X. Zhang, M. Li, Y. H. Lin, C-W. Nan, “Polymer Nanocomposite Dielectrics for Electrical Energy Storage (invited review)”, National Science Review, 2017, 4, 23
03 X. Zhang, Y. Shen, B. Xu, Q. H. Zhang, L. Gu, J. Y. Jiang, J. Ma, Y. H. Lin, C-W Nan, “Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage”, Adv. Mater. 2016, 28, 2055
02 X. Zhang, Y. Shen, Q. H. Zhang, L. Gu, Y.H. Hu, J. W. Du, Y. H. Lin. C-W. Nan, “Ultrahigh Energy Density of Polymer Nanocomposites Containing TiO2@BaTiO3 Nanofibers by Atomic Scale Interface-Engineering”, Adv. Mater. 2015, 27, 819
01 P.H. Hu, Y. Shen, Y.H. Guan, X. H. Zhang, Y. H. Lin, Q. M. Zhang, C-W Nan “Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density”, Adv. Funct. Mater.2014, 24, 3172